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Drivers intermittently engage in many driving and non-driving subtasks.  Decisions to redirect attention are 
based on proximity of vehicle-state to situation-adaptive safety-margins such as time-head-way and 
time-to-line-crossing.  In response to the non-driving task demands, drivers adapt their safety margins to absorb 
the longer response times resulting from diverted or reduced attention to the driving task.  These increased 
safety margins enable driver to adopt a less demanding control strategy which is reflected in lower gains, longer 
delays, and a more non-linear response to vehicle state changes (i.e. increased remnant).  Classical performance 
metrics of means and standard deviations in vehicle-state do not capture how drivers adapt their control-behavior 
to accommodate changing task demands because they are not grounded in driver behavior but in a low-pass 
filtered vehicle state.  It is important to capture the driver’s goals (i.e. safety margins) and how they manage 
these goals (i.e. control strategy) to understand why and how drivers behave as they do.  A car following model 
is presented to demonstrate through identification of the model coefficients how drivers adapt their behavior to 
accommodate the experimentally imposed need to perform a demanding in-vehicle task.   
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1．INTRODUCTION 
Driver models embody our understanding of how drivers 

interact with and adapt to self and externally imposed driving 
and in-vehicle task demands.  The coefficients of these models 
together with the external input and disturbance signals 
characterize and predict how drivers behave.  Comparing model 
coefficients and characteristics across conditions and individuals 
provides a means to gain a fundamental understanding of the 
reason for any differences in statistical properties of the observed 
output variables of the environment-driver-vehicle system.  The 
model coefficients offer a sensitive means to quantify 
differences between drivers and driving conditions.   

Accurate quantification of driver performance and adaptation 
are important in assessment of: i) driver skill, ii) support system 
benefit, iii) in-vehicle task interference, iv) driving simulator 
fidelity, v) driver adaptation and learning, etc.   

Model based assessment requires the development of an 
identifiable driver model whose coefficients and characteristics 
not only predict a vast number of changes in directly measurable 
driving behavior (e.g. speed and distance to lead vehicle plus 
their standard deviations) but also shows how they are correlated 
or causally linked through the model structure.  The goal is to 
understand the most fundamental adaptation, limitation, or 
capability in characterizing driver behavior.  Once these are 
discovered through model based assessment (i.e. identification), 
many standard metrics can be predicted and better understood.  
Driver performance is more sensitively assessed based on the 
driver actions or controller settings they adopted than on the 
vehicle state partly because of the strong low pass filtering 
characteristics of the vehicle; the vehicle essentially filters away 

highly valuable information about driver behavior.  A similar 
philosophy has been adopted in the development of steering and 
behavioral entropy measure of driver performance and workload 
(1,3).   
In this paper, focus is directed to the model based assessment of 
driver’s adaptation to the need to perform a demanding 
in-vehicle task while following another vehicle whose speed 
fluctuates.   
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Fig. 1  Flow diagram of complete driver-vehicle 
interaction car following model.  Input is the lead vehicle 
speed profile.   

 

1.1 Coherence Technique 
The coherence technique (5) is often used to quantify the 

effect of secondary task involvement on car following behavior.  
Its drawback is that the lead vehicle speed has to follow a 
sinusoidal profile whose frequency randomly changes slowly in 
the narrow frequency band around 0.028Hz (see Fig. 4 for an 
example speed profile).  This signal is highly predictable in 
terms of extreme speeds as well as rough timing and magnitude 
range of acceleration and decelerations.  The high sensitivity of 
the method contributes to its widespread use for assessing the 
relative effects of different tasks or support systems (4).  
Realizing that the coherence technique quantifies the modulus, 
delay, and coherence between the lead vehicle speed and the host 
vehicle speed, one can easily extend this to gain, phases, and 
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coherences by adopting a car following model and a more 
naturalistic broader bandwidth lead vehicle speed profile.  This 
is roughly the approach adopted in this paper, except a narrow 
band lead vehicle speed profile is used to first ground the 
proposed method in this well established coherence technique 
methodology before employing it on a natural broadband lead 
vehicle speed profile (future publication).  However, an 
emergency lead vehicle braking event effectively excites the 
driver broad band and thus provides the excitation of the 
majority of poles and zeros that characterize the driver as a 
controller thus enabling and justifying identification of a full 
model.  The model enables one to compute either analytically 
(left for future publication) or through simulation (used in this 
paper), the gains and phases to any sinusoidal input signal (i.e. 
the Bode plot of the transfer function between lead vehicle speed 
and host vehicle speed).  Thus the proposed car following 
model based method is a generalization of the coherence 
technique to more realistic or a wider range of lead vehicle speed 
profiles and can thus be applied to real world naturalistic lead 
vehicle speed profiles.   
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Fig. 2  Flow diagram of driver model.  Eqns. in Sec. 5.#. 
 
The coherence technique per se does not take into 

consideration whether the mean Time Head Way (THW) 
increases or decreases.  As will be shown in detail below, this 
simple change in target THW is hypothesized to be the 
fundamental adaptation that drivers adopt to cope with the 
interfering driving and in-vehicle demands.  When the 
coherence technique shows a decrease in gain, an increase in 
phase lag, and a decrease in coherence, more fundamentally, this 
means that subjects simply adopted a longer THW thereby 
enabling themselves to reduce their car following efforts to avail 
resources to the in vehicle tasks without necessarily degrading 
safety (i.e. the adopted THW and thus the safety is partly based 
on the expected lead vehicle decelerations and in vehicle task 
demands).   
 

2．CAR FOLLOWING DRIVER MODEL 
A car following driver model stands central to gaining insights 

into driver’s adaptations to the need to perform in vehicle tasks.  
It is designed to aid in performance assessment and is therefore 
purposefully kept simple, interpretable and most importantly 
identifiable.   

 
2.1. Driver Model 

A flow diagram of the complete environment-driver-vehicle 
interaction is shown in Fig. 1.  The target THW that drivers 
adopt (defined as median observed THW) is the result of the 

balance between a number of motivational, perceptual, and 
controllability factors.  By changing the target THW and 
controller settings, drivers can safely and comfortably 
incorporate the need to perform in-vehicle tasks.   

The driver as a controller (Fig. 2) is assumed to consists of 
three loops that contribute to the final pedal position: i) a PD 
controller on the distance error signal, ii) a PD controller on the 
speed error signals, and iii) a bias term that produces a pedal 
depression that would yield the current lead vehicle speed in 
steady state if maintained sufficiently long.  The errors cause a 
change in pedal position away from steady state.    

 

2.2. Predicted Adaptations to Secondary Task Needs 
It is hypothesized that the primary adaptation to free up 

attentional and control resources to perform in-vehicle tasks is to 
adopt a longer target THW.  This effectively increases the 
amount of time available to respond to lead vehicle decelerations.  
The causal mechanism to adopting a higher target THW can be 
characterized by a six step chain: i) drivers need periods of time 
during which they can not perceive any changes in lead vehicle 
speed and thus the gap, ii) during these times THW errors build 
up, iii) to correct these large errors when they return to the 
driving task, drivers need to respond faster and stronger, iv) this 
would considerably increase the driving workload and jeopardize 
safety, v) to reduce this workload, a larger tolerance margin in 
THW needs to be adopted, vi) this can be accomplished by either 
allowing for shorter than comfortable THWs (i.e. adopt an 
undesirable safety compromise) or by increasing THW (i.e. 
desirable because it maintains safety and lowers workload), vi) a 
longer THW allows for a slower and weaker response to lead 
vehicle decelerations because now the larger gap absorbs THW 
changes across the look away time such that the minimum 
THWs remains relatively constant between normal driving and 
driving while performing in-vehicle tasks (this is why the 
expected deceleration rate and duration is also expected to 
impacts drivers’ target THW choice).  In summary: i) drivers 
are hypothesized to adopt a longer target THW that affords them 
to adopt a lower bandwidth or equivalently low control effort 
strategy of ii) lower gains and iii) longer delays in the distance 
and relative speed control loops; it is also expected that: iv) 
drivers’ response becomes more nonlinear (i.e. a linear model fit 
to observed driver behavior will degrade).  To test these 
hypotheses, a car following experiment was conducted. 

   
Fig. 3 Left panel: Picture of the UMN HumanFIRST 

8-channel simulator (210 degree front FOV) with small 
actuators under the front axel to render road roughness 
induced vibrations onto the whole vehicle (greatly enhances 
speed perception and control) as well as small pitch and roll 
in response to acceleration and deceleration which is 
expected to increase the bandwidth of the speed and gap 
control loops.  Middle panel: the scene that subjects 
experienced in the car following experiment.  Right panel: a 
picture of the arrow task LCD display that subjects 
interacted with during secondary task trials (see text for 
details).   



 

 
 
 

3．EXPERIMENTAL DESIGN 
Subjects drove a rural Minnesota highway in the UMN 

HumanFIRST driving simulator (Fig. 3) with two 10-minute 
periods of car following (Fig. 3).  In the second period, subjects 
had the opportunity to engage in a secondary task as frequently 
and comfortably as they felt they were able to perform (Fig. 3).   

The main subject sample was comprised of 25 subjects (11 
male, 14 female) with a mean age of 26.4 years (range 19 to 40 
years).  All subjects held a valid Minnesota driving license and 
had corrected vision of 20/40 or better.   

The secondary task was devised to represent the generic 
demands of common in-vehicle tasks including (a) visual search, 
(b) target matching, (c) working memory, and (d) response input.  
It emulates destination entry in a navigation device or searching 
through a complex menu structures of a telematics system.  As 
shown in Fig. 3 (right panel), the task is comprised of a matrix of 
arrows around a central “target” arrow.  The task becomes 
active when the target arrow is pressed.  This user selection 
initiates the rotation of each arrow in a different direction and at 
different speeds.  After a random period (up to 1.5 seconds), the 
rotation cycle is automatically stopped to set the orientation of 
each arrow.  The task is completed by then pressing the number 
button corresponding to the correct number of peripheral arrows 
in the matrix that match the orientation of the central target 
arrow.  Fig. 4 shows how frequently subjects initiated the task.   
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Fig. 4.  Lead vehicle profile during the free driving and 

secondary task driving segment.  During each 10min 
segment, the lead car would at a random location brake hard 
once at a deceleration of 3.5 m/s2.  The asterixes along the 
top axis indicate when a typical subject requested to perform 
a new secondary task.    
 

As dictated by the coherence technique around which the 
experiment was originally designed, the lead vehicle speed 
fluctuated randomly around a nominal speed of 25m/s as 
described by: 

 ( )( ){ } smnTnfv s
l
n π2sin429+=  

where the frequency f(n) randomly shifts between 0.02 to 0.04 
Hz as a function of time step n.    
 

4．VEHICLE DYNAMICS MODEL 
The vehicle dynamics model is constructed around the steady 

state speed that is reached for a given gas pedal depression (see 
Fig. 6 for the identified relationship) and an acceleration or 

deceleration rate that depends on how far the gas pedal 
depression deviates from the one that corresponds to the pedal 
depression associated with the current speed (i.e. if it were the 
steady state speed).  The vehicle model is described by the 
following equation when the pedal value gn is positive (a single 
pedal signal is used; it is negative when the brake is pressed and 
positive when the gas pedal is depressed; the delay to go from 
gas to brake pedal is ignored in this version of the model): 
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This is an intuitive simple model that is sufficient for human 
vehicle interaction car following research.   

If the brake pedal is depressed (i.e. gn has become negative), 
the following vehicle dynamics equations are used: 

 n
h
n

h
n gbvav 011 += −  

where the vehicle speed decays (i.e. engine, air and road friction) 
even when the brake is not depressed and it is assumed that the 
brake signal magnitude is linearly related to deceleration rate.   

The tight fit as exemplified in Fig. 5 shows that the model is 
very reasonable and that it also accurately represents the hard 
braking event around 1040s.   
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Vehicle Model Fit: Subject: 4; Task: Secondary
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Fig. 5. Representative fit between predicted and observed 

host vehicle speed based on observed gas pedal input only.   
 

4.1 Identification 
The vehicle model was identified based on all data from all 

subjects and both segments (i.e. baseline and secondary task 
trials).  First, the state variables of the model (i.e. host vehicle 
speed) were initialized with the observed values.  Second, the 
model was simply run with the model coefficient  

0100210 ,,,,,, bacc −+ααα  

estimates from a gradient decent search algorithm (Matlab 6.5’s 
“fminsearch” with default settings) and the observed pedal signal 
(i.e. gas pedal and brake pedal combined into bipolar signal).  



 

 
 
 

This was repeated for each subject; the fit was computed for 
each subject, and all the fit values were summed and handed 
back to the gradient search algorithm for the next iteration of a 
coefficient estimate.  The fit was simply the sum of the squared 
differences between the model predicted and observed host 
vehicle speeds.  Note, the model was run with one initialization 
at time step 1 only and then was run through all 10min with just 
the observed gas pedal input.  This differs substantially from 
the standard least squares approaches (2).  The standard least 
squares approach could not be applied because the model was 
non-linear and could not be assumed linear over the entire range 
of gas pedal depressions and speeds.  One benefit from the 
adopted approach is that the final result is by definition a model 
that can be run stably, which is not always the case with the 
results from a least squares identification especially if linearity 
assumption can not be ignored.  The resulting model 
coefficients are:   
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Note that these values and are based on a time step of 200ms (i.e. 
4 times the original sampling rate) and that they change for 
different sampling intervals.  A fit for typical subject 4’s 
secondary task segments is shown in Fig. 5.  The average std 
prediction error between observed and model predicted lead 
vehicle speed across all subjects is about 1m/s.  For most 
subjects it is about 0.2 and for a few with very high bandwidth 
pedal fluctuations the fit is much worse.   
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Fig. 6.  Relationship between gas pedal position and steady 

state vehicle speed.  Not expected to be representative outside 
experimental speed range of 15-40m/s.   

 
4.2 Steady State Speed per Gas Pedal Depression 

The steady state relationship between gas pedal position and host 
vehicle speed were identified as part of the overall vehicle model 
identification (Fig. 6).  The fact that the curve drops down a little at 
high gas pedal depression is due to the fact that only pedal 
depressions up to about 0.8 were observed thus the steady state 
speed at higher gas pedal depressions can not be trusted.   
 

5．DRIVER MODEL 
The driver model shown in Fig. 2 is a straight forward PD 

controller on distance deviation from target distance (i.e. vlead 

THW*) and a PD controller on relative velocity.  The error free 
gas pedal depression is based on the current lead vehicle speed 
using the inverse of the relationship shown in Fig. 6.  The 
driver’s control goal is assumed two fold: i) maintain THW 
within a tolerance range around a target THW to prevent the 
minimum THW to become too low, and ii) maintain the relative 
velocity within a tolerance range around zero.  The complete 
set of equations that comprise the driver model are: 
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For a typical subject (Subj.2 baseline), the coefficient values are:  
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Note that the three alpha coefficients values are simply those 
obtained in the car model.  Essentially it is assumed that the 
subject has the equivalent of a perfect internal model of the 
relationship between gas pedal and steady state vehicle speed.   

To avoid a significant impact of signal noise on the 
identification results, a time step of 200ms was used (i.e. 4 times 
the original data collection sampling rate).   

An example of how well the driver model fits the data is 
shown in Fig. 7.   
 
5.1. Driver Model Identification 

The model was identified for each subject for each 10min 
segment (i.e. baseline and secondary) separately.  First the 
target THW was simply set to the median observed THW.  
Identification of the 4 gain coefficients and the delay coefficient 
(i.e. same delay was assumed in both error loops) was achieved 
by first initiating the model’s state variables (i.e. host vehicle 
speed and gap) to the observed ones, the error gain coefficients 
to zero, and the delay to a value between 0 and 10 time steps (i.e. 
0 and 2s).  Second the model was run and the fit computed 
between model produced output (i.e. time series of host vehicle 
speed, gap, and pedal) and the observed corresponding time 
series.  Then the 4 error gain coefficients were adapted with a 
gradient search algorithm (Matlab 6.5’s “fminsearch” function 
with default setting) to reduce the fit as much as possible.  Note 
that the delays were kept constant during the search for the 4 
gain coefficients.  This was repeated for all delays between 0 
and 10 time steps and the coefficients for the delay that yields 
the best fit are selected.  For an example fit, see Fig. 7.   



 

 
 
 

Five subjects were removed from the analysis because of 
missing data (2), an extremely large and fluctuating target THW 
(1), and extremely low correlation between lead vehicle speed 
and gas pedal depressions (2) suggesting extremely low 
motivation (i.e. behavior so inconsistent that model assumptions 
did not apply).   

 
5.2. Driver Model Identification Fit Function 
The fit is simply the following function, which roughly 
normalizes each term by scaling it by the inverse standard 
deviation or the observed signal in question.   
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where the ^ sign signifies model prediction.  To avoid a 
chattering controller, a 4th fit term that penalizes fast pedal 
fluctuations was added.   
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Fig. 7.  Model fit for subject 2’s baseline task trial   The 

fit is shown for host vehicle speed (top panel), pedal position 
(middle panel), and gap (bottom).   

 
6．RESULTS AND DISCUSSION 

The results indicate that drivers indeed adapt their behavior in 
response to the need to perform an in vehicle task as frequently 
as comfortably and safely possible as hypothesized in section 2.2.  
We observe that subjects adopt a significantly longer THW as 
shown in Fig. 8.  Below the figures the significance values are 
given for each panel.  The significance is computed with the 
Wilcoxon signed rank test which performs a paired, two-sided 
test of the hypothesis that the difference between the 
subject-matched samples between baseline and secondary trials 
come from a distribution whose median is zero.  
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Fig. 8.  Demonstration that the adopted target THW is 

significantly (alpha=0.0143) larger under secondary task 
conditions.  The right panel shows per subject how their 
target THW changed between baseline (abscissa) and 
secondary trial (ordinate).    
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Fig. 9.  The dc-gains decrease significantly (alpha=0.0680 
for relative velocity dc-gain and alpha=0.0918 for the relative 
distance dc-gain) for most subjects when they perform a 
secondary task.   
 
As hypothesized, subjects adopt lower dc-gains when 
performing the secondary task (Fig. 9).  Fig. 10 shows clearly 
the correlation between THW and dc-gains (i.e. lower gains for 
longer THWs).  The lower dc-gains result in a significant 
increase in the lag between the lead vehicle and host vehicle 
speed fluctuations as shown in Fig 11.  The lag was computed 
based on model simulation runs with the observed lead vehicle 
profile.  These lags and other predictions can also be computed 
analytically for any frequency separately (i.e. bodeplot).   

0 1 2
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Target THW [s]

R
el

at
iv

e 
V

el
oc

ity
 G

ai
n:

 c 0 +
 c

1

 

 

0 1 2
−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

Target THW [s]

R
el

at
iv

e 
D

is
ta

nc
e 

G
ai

n:
 k

0 +
 k

1

 

 

Baseline
Secondary

Baseline
Secondary

 
Fig. 10.  The dc-gains in gap and speed error loops are lower 

when drivers adopt longer target THWs.   



 

 
 
 

Because the control gains are lower, the lags are greater (note 
that delay and lag can not be separated for the relatively narrow 
bandwidth input signal) and the variability in THW is expected 
to be greater; this is confirmed in Fig 12.   
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Fig. 11.  Demonstration that the lag is significantly 

larger when subject perform a secondary task (alpha=0.0031 
for observation and alpha=0.0228 for model prediction).    

 
Finally, it was hypothesized that the driver behavior would 
become more nonlinear with the introduction of the secondary 
task.  In Fig. 13 it is shown that indeed the lead vehicle speed 
profile is not matched as accurately (low correlation) and that the 
model does not predict the pedal activity as accurately (right 
panel).  The latter is attributed to two hypothesized factors that 
will be confirmed in later studies: i) subjects overreact to errors 
causing unnecessarily strong and frequent pedal actions (i.e. 
from the model’s perspective), and ii) subjects release the gas 
pedal slightly upon initiation of an attention diversion to 
momentarily increase their safety margin (i.e. a strategy not 
modeled and thus contributing to a higher remnant; the part of 
observed behavior not predicted by the model).   
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Fig. 12.  Demonstration that subjects in general allow for a 
larger variation in THW as their target THW (abscissa) 
increases (left panel).  This phenomenon is reproduced by 
the model except to a lesser degree (right panel).   
 

7．CONCLUSIONS 
In summary, subjects adapt to the need to perform the secondary 
task by: i) primarily increasing their safety margin (i.e. 
increasing their target THW), ii) secondarily enabling a decrease 
in their gains to lower workload and avail attentional and control 
resources for the secondary task (leads to high lags in velocity 
and distance error response loops), and iii) adopting some 

reactive or anticipatory pedal movement that result in a deviation 
from what a linear model predicts.  The model theoretic 
assessment of driver behavior offers an easily interpretable 
framework for gaining an understanding of the mechanisms that 
underlie drivers’ adaptation performing demanding in vehicle 
tasks.  Less demanding tasks may not result in driver adaptation, 
which this approach would also show.   

The proposed simple driver model fits the data encouragingly 
well and has demonstrated to offer a useful tool in 
complementing the standard performance assessment techniques 
with the model based approach presented in this paper.   
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Fig. 13.  Left panel: Demonstration that subjects are less 

able to match the lead vehicle speed profile when performing 
a secondary task (i.e. lower cross covariance between lead 
vehicle speed and host vehicle speed).  Right panel: Worse 
pedal prediction fit when performing secondary task (i.e. 
magnitude of first term in equation in section 5.4. is larger).    
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