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Figure 1: Visualization of acceleration and the associated arousal of accelarousal-prone driver S07, shortly after her entry onto
a highway. LEFT: The hyphenated blue circle on themap indicates the position associatedwith the figure’s snapshots.MIDDLE:
Visual images captured from a dash camera and a facial camera show the surrounding environment and the driver’s facial
expressions, respectively. RIGHT: Thermal facial image, where the red rectangle outlines the tracked region of interest (ROI).
The preponderance of black dots on the zoomed in thermal ROI (see inset) suggests strong transient activation of perspiration
pores, a phenomenon associated with the onset of hyperarousal.

ABSTRACT
We conducted a daytime naturalistic driving study that involved
the same 19 km town itinerary under similar light traffic and fair-
weather conditions. We applied a real-time unobtrusive design that
could serve as template in future driving studies. In this design,
driving parameters and drivers’ arousal levels were captured via a
vehicle data acquisition and thermal imaging system, respectively.
Analyzing the data, we found that about half of the n = 11 healthy
participants exhibited significantly larger arousal reactions to accel-
eration with respect to the rest of the sample. Acceleration events
were of the mundane type, such as entering a highway from an
entrance ramp or starting from a red light. The results suggest an
underlying grouping of normal drivers with respect to the loading
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induced by commonplace acceleration. The finding carries implica-
tions for certain professions and the design of semi-autonomous
vehicles.
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1 INTRODUCTION
An important variable that features in most investigations on driver
style and safety is acceleration. Acceleration is constitutional to
driving [2]. First, it is the way drivers bring an idle vehicle to a
target speed in order to reach their destination [15]. Second and
most important, drivers frequently adjust acceleration throughout a
drive to cope with dynamic traffic conditions. Different drivers have
different acceleration preferences. For example, some drivers prefer
rapid acceleration changes, a style that in current Driver Assistance
Systems (DAS) is captured in the Sport drive mode; others prefer
exactly the opposite, which is captured in the Economy drive mode.

In addition to style preferences associated with comfort and driv-
ing satisfaction, volitional acceleration profiles are also predictive of
crash propensity [18]. Interestingly, while speed limits are enforced
by state laws, acceleration limits are not. In lieu of regulation, ag-
gressive acceleration patterns are targeted by telematics-based safe
driver insurance programs [13]. In this direction, recent research
efforts focused either on defining operational envelopes of safe ac-
celeration and speed [10] or on developing methods for recognizing
risky driving behaviors [27].

Either as a safety or as a style factor, acceleration has been linked
to physiological responses both in simulated [18] and test-track ex-
periments [9]. Hence, in addition to subjective ratings, acceleration
effects on drivers could be objectively monitored via cholinergic
(e.g., electrodermal activity) or adrenergic (e.g., heart rate) measure-
ments. Dillen et al. [9] found that acceleration positively correlates
with electrodermal activity (EDA) in passengers’ palms. They also
showed that palm EDA was predictive of passenger discomfort.
Alpers et al. [3] demonstrated that palm EDA, respiratory, and
electrocardiographic measurements differed significantly between
normal drivers and drivers diagnosed with phobias. Our research
builds upon this prior body of work, aiming to address the following
research question:
RQ: How arousal responses of normal drivers relate to acceleration
and other driving variables in the context of a standard commute? Is
there any underlying grouping in these responses?

As acceleration is nearly ever-present and because arousal in-
dicates coping capacity [19], answering the said RQ will not only
elucidate driving behaviors in current vehicles, but will also inform
human-centered design in future vehicles with higher levels of
automation. Indeed, in SAE Level 3 and Level 4 vehicles, where
driving will interleave between humans and machines [14], one of
the thorniest issues is safe handover of vehicle control from the
machine back to the human driver [7]. Knowing when is the best
time to do this handover is a challenging multi-factorial problem,
to which our research aspires to make a contribution. For example,
if the machine knows that the human driver tends to be overloaded
under certain conditions, this informationmay benefit the handover
decision-making process.

It is generally accepted in the literature that naturalistic driving
studies provide the best ecological validity [6]. At the same time,
however, naturalistic drives pose analytic challenges due to the
presence of confounding factors [9]. In this respect, we struck a
careful balance by performing a naturalistic driving study but con-
trolling for itinerary, traffic levels, weather, and driver profiles. In
more detail, we collected physiological, driving, and psychometric

data from n = 11 young but experienced drivers who drove a 19
km itinerary in Bryan - College Station, TX not unlike their daily
commute. The drives took place in the morning under light traffic
and fair-weather conditions. We quantified arousal by measuring
EDA on the driver’s face via thermal imaging - a method with high
accuracy and ecological validity [22]. The said method circumvents
the problems associated with palm EDA sensing at the driver’s
hands, as these are busy handling the steering wheel [9, 25].

Extending Dillen et al.’s [9] results for passengers in test-track
drives, we show that a positive correlation between acceleration and
EDA levels also exists for drivers in naturalistic drives. Furthermore,
we show that there is an underlying grouping of normal drivers
determined by their arousal responses to commonplace acceleration.
This result is intriguing and, due to the ecological validity of our
study, it is also promising. It suggests that there is likely a category
of normal drivers who are hyperaroused during routine acceleration
events - a phenomenon we call accelarousal (Fig. 1), and which
carries behavioral and design implications.

We contribute: 1) Initial evidence that hyperarousal responses
to acceleration is an innate condition to some drivers, irrespective
of other contextual factors. 2) An ecologically valid method to
measure and detect hyperarousal in driving studies. 3) Public release
of the data [12] and code associated with this paper to ensure
reproducibility and encourage further research. The findings of our
study stand to benefit the design of physiological feedback loops
for SAE Level 3 and Level 4 vehicles. We envision such feedback
loops informing machine handover systems to avoid relinquishing
control during accelarousal conditions - a safety consideration.

2 DESIGN OF NATURALISTIC DRIVING
STUDY - NAT1

Arousal is indicative of the driver’s load [23]. Undue load is linked
to stressors, leading to deterioration of driving performance and
experience [20]. Stressors that have been studied extensively in
the literature are distractions, particularly in the form of texting
while driving [19]. The main goal of NAT 1 was to explore the
arousing effect of variables that are constitutional to driving, such
as acceleration and speed, under the most benign circumstances.
Accordingly, the study design called for an easy, non-distracted
town drive in daylight and good weather.

The experimental protocol was approved by the institutional
review boards of the universities participating in this study. After
giving informed consent, the participants completed a biographic
questionnaire, providing demographic information. Subsequently,
the participants went through two sessions.

Baseline session (BL). The purpose of the BL session was to
establish the baseline arousal level of participants. Baseline
arousal levels exhibit significant inter-individual variability
in human beings [5], which means that the ‘effective zero
lines’ vary. Accordingly, in stress studies what matters is not
the absolute arousal value, but how much the task raised the
subjects’ arousal level from their respective baseline. Hence,
by subtracting the corresponding mean baseline levels from
subsequent phasic arousal measurements, we ameliorate
measurement bias between participants [1]. To bring par-
ticipants close to their baseline levels, we asked them to sit



Accelarousal CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

quietly in the parked experimental vehicle, listening to spa
music for 5 minutes. A thermal imaging sensor was acquir-
ing participants’ physiological signals in real-time during
this period.

Naturalistic drive (NATD). Upon completion of the BL ses-
sion, participants drove a designated itinerary in the Bryan -
College Station, TX area (population about 210,000), using a
2015 Toyota Sienna. Figure 2a shows this itinerary, which in-
cluded a segment of a highway as well as residential streets.
The length of the itinerary was 19 km and took participants
25-35 min to complete it with speeds that ranged from 0 to
120 kph. Traffic was light in all instances.

After the BL and NATD sessions, the participants completed the
NASA TLX questionnaire [11] - a subjective workload assessment
tool that complements the objective assessment of task-induced
sympathetic arousal; it features the following sub-scales: Mental
Demand, Physical Demand, Temporal Demand, Own Performance,
Effort, and Frustration.

2.1 Participants
We recruited participants from the communities of Bryan and Col-
lege Station, TX through emails and flyer postings. Participants had
to have normal or corrected to normal vision and a valid driving
license. We excluded subjects on medications affecting their ability
to drive safely. We selected individuals with at least two years of
driving experience, who commuted daily, and were between 18
and 27 years of age. Hence, we focused on young but experienced
drivers to safeguard the power of the pilot study. This is because sys-
tematic differences between young and old drivers were reported
in other affective driving studies [19], rendering large age variance
a potential confounder that would need a bigger study to resolve.
A total of n = 12 subjects conforming to the inclusion-exclusion
criteria volunteered for the study. Raw data for one participant
were not adequately recorded due to technical issues. Raw data for
n = 11 participants (5 males/6 females, 21.6± 1.7 years of age) were
largely complete, comprising our working set.

2.2 Experimental Setup
Facial thermophysiology, facial observations, and first person ob-
servations were recorded via a thermal and two visual cameras,
respectively. These video recordings took place during both the
BL and NATD sessions. All three cameras were located ∼ 1m from
the driver, tucked atop the dashboard (Fig. 2b). A data acquisition
system was capturing several driving variables during the NATD
session. All the sensors were time-synced.

In more detail, we used a Tau 640 long-wave infrared (LWIR)
camera (FLIR Systems Inc, Wilsonville, OR) with < 50 mK thermal
resolution and 640×512 pixels spatial resolution. Thermal data were
collected at a frame rate of 7.5 fps and were used for computing
the driver’s arousal. Visual facial imagery, collected via a webcam,
was meant to be used for qualitative assessment purposes. Another
webcam was placed on the dashboard, aiming out towards the
front of the vehicle. It was meant to record the itinerary from the
driver’s point of view. We also used a Dewetron Data Acquisition
(DAQ) system (Dewerton Inc, East Greenwich, RI) to record driving
variables from different channels. These variables included speed,

Figure 2: Design of NAT 1 Study. [a] NATD itinerary. The
white arrows indicate the direction of driving. The superim-
posed speed heatmap was generated from participant’s S01
driving data. [b] Setup of the thermal, facial, and dash cam-
eras in the vehicle employed in the study (a specially instru-
mented 2015 Toyota Sienna). In the back seat shows the com-
puter screen of the experimenter.

acceleration, brake force, and steering angle. TheDAQ also collected
GPS data.

3 DATA PREPARATION
While driving variables were readily available from the DAQ system,
the arousal variable was not immediately available, because it was
embedded in the captured thermophysiological data. Hence, we
needed to extract the arousal signals from the facial thermal imaging
streams. We also needed to extract feature variables.
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Figure 3: Extracted raw and noise-reduced perinasal perspiration signals (PP) of participant S12 in the NATD session. TOP:
Thermal facial snapshots demonstrating natural head motions and other challenging actions during driving (e.g., putting on
sunglasses). MIDDLE: Details of thermal ROIs outlined by the red rectangles in the thermal facial snapshots. BOTTOM: The
raw PP signal in grey and the noise-reduced PP signal in red. The algorithm extracts perinasal perspiration values in the vast
majority of cases. In a few instances where reliable extraction is not possible (e.g., extreme head turn moment at t = 845 s), the
algorithm does not report a value (NA), thus safeguarding the reliability of the physiological measurement.

3.1 Extraction of Arousal Signal
We used the thermal facial videos to extract perinasal perspiration
(PP) signals, known to commensurate with electrodermal (EDA)
activity in the palm [22]; thus, PP is a reliable proxy of arousal. As
the drivers’ heads were moving freely, to ameliorate the effect of
motion in the PP signal extraction, we used a proven tissue tracker
reported by Zhou et al. [28]. We initiated the tracking algorithm
by selecting the participant’s perinasal region in the first frame. In
every subsequent frame, the tracker determined the best matching
section of the thermal clip via spatiotemporal smoothing. In this
temporally tracked region, activated perspiration pores appear as
‘cold’ (dark) spots, amidst ‘hot’ surrounding tissue - a phenomenon
quantified by a morphology-based algorithm [22], which yields the
arousal signal (Fig. 3).

Although PP signal extraction is robust, PP values still contain
high-frequency noise stemming from tracking imperfections [28].
We used a low-pass Fast Fourier Transform (FFT) filter with thresh-
old f = 1/2.5 to suppress such noise [24]. Figure 3 shows superim-
posed the PP signals of participant S12 before and after applying
FFT filtering.

In order to ameliorate bias due to significant inter-individual
variability of baseline arousal levels among participants, we ad-
justed their PPNATD signals by subtracting their corresponding
mean PPBL signals. Effectively, this normalization allows analysis
to be performed on the participants’ differential arousal induced
by the driving task, rather than the absolute arousal, which may
be deceptively high or low, depending on the baseline level from
which participants started. Please also note that because PP signals
are of exponential nature [22], we apply a logarithmic correction
to comply with normality assumptions in subsequent analytic cal-
culations. Equation (1) shows the formula we used to compute the
corrected normalized arousal of participant Si at time t of NATD.

∆PPNATDi (t) = ln(PPNATDi (t)) − ln(PPBLi ). (1)

3.2 Feature Extraction
A key issue in the operationalization of analytic investigations in
driving studies is the choice of the past and future time windows.
Here we follow the lead of prior research in aggressive vs. non-
aggressive driving, where acceleration and other driving variables
play a key role; this research has documented that a past window



Accelarousal CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

of 30 seconds is sufficient for robust predictions 5 to 10 seconds out
[18]. We settled on a 5 second future window, taking into account
the time constant of cholinergic responses, which ranges between
2 and 5 s [26].

Accordingly, we performed feature extraction using a sliding
past → f uture time window of 30 s → 5 s. This windowing
applied to all the models described in the present paper. Assuming
the currently examined time is t , we compute driving features
in [t − 30, t] and arousal features in (t , t + 5]. The features are
of statistical or correlative nature. Statistical features include the
mean and standard deviation of speed, acceleration, brake force,
and steering for the last 30 seconds. Statistical features also include
the mean (corrected and normalized) driver arousal in the next 5
seconds. The said features provide information about the variables’
distributions in the time window of interest. Correlative features
include the Pearson correlation among driving statistical features in
the window [t − 30, t] and arousal features in the window (t , t + 5].
Hence, correlative features capture the relationship between driving
variables in the recent past and driver state in the immediate future.
We computed the correlation strength between all feature pairs
and found that the brake force features are highly collinear with
the features of other driving variables (correlation coefficient up
to r = ±0.8). For this reason, we will exclude break force features
from subsequent analytical models.

4 ANALYTIC METHODS AND RESULTS
The R scripts that implement the analytic methods described in
this section reside in GitHub (Huynh, T. & Pavlidis, I. Accelarousal-
Study-Methods. GitHub https://github.com/UH-CPL/Accelarousal-
Study-NAT1-Methods). These scripts operate on the study’s cu-
rated data, which are freely available on the Open Science Frame-
work (OSF) [12]. In more detail, the OSF repository holds bio-
graphic/psychometric data, quantitative data, and ancillary media.
The quantitative data include physiological and driving signals,
while the ancillary media feature video recordings from the facial
and dash cameras.

4.1 Linear Regression Model
First, in Eq. (2) we constructed a mixed effects model to check if
statistical features of driving variables over 30 second increments
in the past, can account for the drivers’ arousal responses 5 seconds
into the future. The dependent variable ∆PPNATDi (t , t +5] indicates
the mean corrected and normalized arousal response for participant
i , 5 seconds out. As the time t shifts for participant i , mean (x ·)
and standard deviation (s ·) predictors are computed over the past
t −30 seconds for speed, acceleration, and steering. The fixed effects
term ∆PPNATDi denotes the overall mean corrected and normalized
arousal of participant i , while 1|S indicates the incorporation of
random effects and ϵ is white noise.

∆PPNATDi (t , t + 5] = βx speedxspeedi, [t−30,t ] + βsspeedsspeedi, [t−30,t ]
+ βx accelxacceli, [t−30,t ] + βsaccelsacceli, [t−30,t ]
+ βx steerxsteeri, [t−30,t ] + βssteerssteeri, [t−30,t ]
+ ∆PPNATDi + βo + ϵ + 1|S .

(2)

Coeff. Estim. Std. Err. df t-val Pr(> |t|)
βx speed 0.000 51 0.000 13 2326 3.894 < 0.001∗∗∗
βsspeed −0.001 26 0.000 41 2325 −3.045 0.002∗∗
βx accel 0.002 28 0.000 65 2326 3.466 < 0.001∗∗∗
βsaccel 0.006 51 0.001 05 2326 6.223 < 0.001∗∗∗
βx steer −0.000 69 0.000 32 2327 −2.155 0.031∗
βssteer −0.000 77 0.000 19 2326 4.056 < 0.001∗∗∗

Table 1: Results of linear model (2) instantiated with 30 s →
5 s window split, between predictors → response, respec-
tively. *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001

Table 1 shows the results of linear model (2). All driving variables
account to various degrees for the upcoming arousal state of the
driver. Acceleration, however, appears to account the most with
both its moments exhibiting high significance (p < 0.001). Further-
more, the positive coefficients βx accel and βsaccel suggest that the
higher the mean acceleration or the acceleration variance of the
vehicle, the higher the arousal of the driver. After acceleration, the
second most predictive variable appears to be speed, followed by
steering.

4.2 Hierarchical Clustering - Types of Drivers
We used a clustering algorithm to identify any underlying grouping,
which could provide deeper insights into the results of linear model
(2). For a dataset with a small number of participants, such as the
NATD dataset, hierarchical clustering is a good methodological
choice [4]. To maximize the discrimination between clusters, we
selected the complete linkage function [8] as the linkage criterion.
All correlative features have a range between -1 and 1, and thus,
standardization was not necessary [16]. We used Silhouettes [21]
to determine the optimal number of clusters, which came to be
c = 2. Table 2 shows the resulting two groups of drivers based
on clustering the correlative features of driving variables the last
30 seconds with the drivers’ arousal the next 5 seconds. Drivers
in the group highlighted in red exhibit consistently significant
positive association of acceleration with arousal, as well as speed
with arousal. Drivers in the group highlighted in blue are bereft
of such a pattern. Furthermore, the NASA-TLX scores of the red
group 32.75 ± 14.43 trend higher than the scores of the blue group
19.67 ± 9.07 (t-test, p = 0.08) - a psychometric confirmation that
the red group’s acceleration- and speed-driven hyperarousal is
accompanied with a sense of overloading.

We named drivers in the red group accelarousal-prone. One
could also name them tachoarousal-prone, as speed intensity also
correlates with their arousal status. However, acceleration appears
to be the strongest and most consistent factor across all the models
we employed, that is, linear (section 4.1) and clustering (section
4.2). Hence, acceleration is likely the primary contributor to this
phenomenon with speed coming second and as a result of it. Fig-
ure 4 depicts the intensity evolution of driving and arousal vari-
ables along the itinerary for non-accelarousal-prone driver S01 vs.
accelarousal-prone driver S07. The speed column of panels shows
that both drivers were speeding in the state highway portion of the
itinerary. As the acceleration column indicates, this speeding was
achieved through bouts of acceleration. The arousal column, shows

https://github.com/UH-CPL/Accelarousal-Study-NAT1-Methods
https://github.com/UH-CPL/Accelarousal-Study-NAT1-Methods
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pi xspeed sspeed xaccel saccel xsteer ssteer

S01 0.174 0.013 0.041 0.061 −0.114 −0.167
S02 0.045 0.030 0.182 0.432∗∗∗ 0.109 0.259∗

S03 0.392∗∗ −0.122 0.313∗ 0.237 0.049 0.187
S04 0.069 −0.034 −0.002 0.297 −0.019 0.278
S05 0.483∗∗ 0.201 0.523∗∗ 0.262 −0.211 0.207
S06 0.066 0.071 0.312∗∗ 0.262∗ −0.042 0.107
S07 0.388∗∗∗ 0.062 0.420∗∗∗ 0.446∗∗ 0.073 0.229
S08 −0.036 −0.163 0.142 0.100 −0.022 0.073
S10 −0.338∗∗∗ 0.044 −0.092 0.026 0.182 0.092
S11 0.365∗∗∗ 0.152 0.420∗∗∗ 0.471∗∗∗ −0.080 0.154
S12 0.443∗∗∗ −0.004 0.439∗∗∗ 0.314∗∗ −0.217 0.225

Table 2: Clustering results of the correlative features between driving variables and drivers’ arousal with a 30 s → 5 s time
windowing, respectively. Red text shows cases where acceleration and speed intensity consistently correlate with arousal
(accelarousal-prone), while blue text shows cases where such a pattern is absent (non-accelarousal-prone). Star notation indi-
cates significance level.

Figure 4: Visualization of driving and arousal variables through the NATD itinerary for non-accelarousal-prone driver S01 and
accelarousal-prone driver S07. The dotted blue ellipses with the arrows point to the highway portion of the itinerary where
speeding through bouts of acceleration produce very different arousal responses in the two drivers.

the different effects these otherwise similar driving behaviors had
on the drivers’ arousal states: The non-accelarousal-prone driver
S01 maintains low levels of arousal (dark color in the heatmap),
while the accelarousal-prone driver S07 undergoes a hyperarousal
episode throughout this process (light color in the heatmap).

5 DISCUSSION
This pilot research demonstrated that normal, young, and experi-
enced drivers are aroused with respect to variables endogenous
to driving, notably acceleration, but also speed. This association
appears to be free of confounders, as it is the result of naturalistic
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drives on the same itinerary, under the same anodyne conditions,
that is, light traffic and good weather in daytime.

As every statistical association, the association found between
arousal and acceleration is in the mean sense. A key contribution
of this study is the clustering result that reveals an underlying
high and low arousal grouping of normal drivers with respect to
acceleration. The finding bears implications for certain categories
of the driving population. We measured that in typical acceleration
events in NATD, accelarousal-prone drivers experience on average
46.2% stronger arousals than non-acceleration-prone drivers. For
the former, if these events happen frequently and on a sustained
basis, they are likely to have long-term health effects, not unlike
any other long-term stressor [17]. For instance, drivers who are in
the business of package delivery, with frequent stop and go, is a
group of primary concern.

The study’s finding also stands to inform the design of vehicles
with advanced degree of autonomy (SAE Levels 3-4). In such ve-
hicles, handover of vehicle control as well as automated driving
mode need to take into account the accelarousal-prone condition
of the driver for safety and comfort reasons.

EDA is reportedly the best indicator of arousal in affective driving
studies [9], but measuring EDA at the driver’s palms has obvious
usability problems [25]. As an alternative, researchers demonstrated
the value of contact-free EDA in simulated driving studies [19]. The
current work is the first to demonstrate the value of contact-free
EDA in naturalistic driving studies. The method hinges on the use
of perinasal perspiration. Perinasal perspiration is a cholinergic
channel that is as sensitive to arousal levels as the palm perspiration
channel [22], but having the advantage of manifesting on the face
and measured remotely, via thermal imaging.

To reduce confounding effects and maintain reasonable power
in this pilot study, we constrained the type of drivers and the driv-
ing conditions. Using our methodological blueprint, future studies
should include older drivers and test more advanced naturalistic
driving scenarios with variable diurnal, environmental, and traffic
conditions.
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