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Abstract
The transition of control between partially automated vehicles and drivers is an important part of the operational design
domain and poses unique and important design issues. One approach for enhancing the design of the transition of control
mechanisms is to predict driver behavior during a takeover by analyzing his/her state before a takeover. Although there is a
wealth of existing literature on modeling the prediction of driver behavior, little is known about the prediction of takeover
performance (e.g., driver error) and its underlying data structure (e.g., window sizes or the inclusion of certain features).
Thus, the goal of this study is to predict driver error during a takeover event using supervised machine learning algorithms
for various window sizes. Three machine learning algorithms (i.e., decision tree, random forest, and support vector machine
with a radial basis kernel) were applied to granular driving performance, physiological, and glance data from a driving simula-
tor experiment examining automated vehicle driving. The results showed that a random forest algorithm with an area under
the receiver operating characteristic curve of 0.72, trained on a 3 s window before the takeover time, had the best perfor-
mance with regard to classifying driver error accurately. In addition, we identified the 10 most important predictors that
resulted in the best error prediction performance. The results of this study could be useful in developing algorithms for
driver state that could be integrated into highly automated systems and, potentially, improve the takeover process.
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Automated vehicle technologies have the potential to
reduce the nearly six million motor vehicle crashes per
year in the U.S.A. (1). However, this potential is limited
by the complexity of the interactions between the driver
and the automated system (2, 3). In particular, major
challenges with regard to safety may arise when drivers
are required to take over control of the vehicle when the
automated system fails or encounters an operational
limit. There is a wealth of existing research that has
investigated the factors that influence takeover perfor-
mance (4), and it suggests that giving drivers more time
to react to takeovers and providing them with assistive
technology to aid their decision-making during takeovers
may improve takeover performance and, consequently,
increase safety (4). Machine learning algorithms that
accurately predict takeover behavior are an important
first step in developing such technology. Although a sub-
stantial amount of research has been conducted on

machine learning in the automated driving domain (4),
literature in the area of driver takeover during auto-
mated driving is still relatively sparse.

Previous studies have predicted driver takeover per-
formance (5–8), situation awareness (9), and fatigue (10)
using various machine learning algorithms. Du et al. (5)
used six machine learning methods to predict driver take-
over performance and categorize it as bad or good
according to the takeover reaction time, maximum
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resulting acceleration, minimum time to collision (TTC),
and standard deviation of road offset. They found that
the random forest algorithm on a 3 s time window
(before the event onset) performed the best when drivers
were engaged in nondriving-related tasks. In another
study, Ayoub et al. (6) employed eXtreme Gradient
Boosting to predict the takeover time using variables that
influenced this, for example, the level of automation and
the takeover request modality. The analysis found that
the urgency of the situation (low, medium, high), take-
over time budget, driver’s age, and type of nondriving-
related task (handheld versus nonhandheld) were the
most important variables for predicting takeover time. In
a study by Braunagel et al. (7), takeover readiness—an
indicator of takeover quality—was categorized as low or
high and predicted by three categories of features: com-
plexity of the traffic situation; type of secondary task
performed by the driver; and on-road gaze. The study
compared support vector machine (SVM) with a linear
and radial basis kernel, linear discriminant, naı̈ve Bayes,
and k-nearest neighbor (kNN) and found that the SVM
with a linear kernal had the highest classification perfor-
mance. Tivesten et al. (8) developed a simple metric- and
threshold-based classifier (i.e., a manual approach for
selecting metrics and thresholds that can capture the
crash involvement) to predict driver takeover perfor-
mance categorized as crash and noncrash. This study
analyzed driver glance behavior (e.g., number of on-road

and off-road glances) and environmental parameters
(e.g., number of warnings issued) and found that a low
level of visual attention to the forward roadway, the per-
centage of time the driver looks on the road during the
complete drive, and long visual reaction time to attention
reminders are associated with increased risk of crash
involvement. Zhou et al. (9) used the light gradient
boosting method to predict situation awareness—defined
between 0 and 1 based on three performance measures of
situation awareness when simulating driving scenarios
during the takeover period. This study used eye tracking
(e.g., number of fixations on the mirrors) and subjective
data (e.g., years of driving experience) as input, and
found that features such as the length of the video, the
time needed to make a decision, and rearview mirror
fixation were the most important in predicting situation
awareness. Zhou et al. (10) predicted the driver’s transi-
tion from nonfatigue to fatigue when driving in auto-
mated mode using a random forest algorithm and driver
physiology. This analysis found that heart rate, heart rate
variability, breathing rate, and standard deviation of
breathing rate were the most important features in pre-
dicting fatigue. The ground truth, measures, and algo-
rithms used in these studies as well as the current study
are summarized in Table 1.

Although these studies provide valuable insights into
driver behavior predictions during automated driving,
they do not include granular driving performance

Table 1. Ground Truth, Measures, and Algorithms from the Literature and the Current Study

Study Ground truth Measures Algorithm

Du et al. (5) Takeover performance (good/bad) Environmental parameters
Physiology
Eye glance

SVM
NB
DA
kNN
LR
RF

Ayoub et al. (6) Takeover performance (time) Environmental parameters
Demographics

XGBoost

Braunagel et al. (7) Takeover readiness (low/high) Environmental parameters
Eye glance

Linear SVM
SVM with a radial basis kernel
NB
DA
kNN

Tivesten et al. (8) Takeover performance
(crash/no crash)

Environmental parameters
Eye glance

Metric- and threshold-based

Zhou et al. (9) Situation awareness (0 to 1) Eye glance LightGBM
Zhou et al. (10) Fatigue (fatigue/nonfatigue) Physiology

Eye glance
NARX
RF

Current Takeover performance
(takeover error/no error)

Physiology
Eye glance
Driving

SVM RBF
RF
DT

Note: SVM = support vector machine; NB = naı̈ve Bayes; DA = discriminant analysis; kNN = k-nearest neighbors; LR = logistic regression; RF = random forest;

XGBoost = eXtreme Gradient Boosting; LightGBM = light gradient boosting method; NARX = nonlinear autoregressive eXogenous network; RBF = radial

basis function; DT = decision tree
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measures such as speed or acceleration, which may be
important indicators of successful takeover performance.
Furthermore, the ground truth definitions of takeover
errors in previous work are grounded in driving perfor-
mance rather than execution of the takeover action.
There is also a need to replicate the findings of these
studies to understand algorithm characteristics and per-
formance relationships that can be replicated across
datasets. The goal of this study is to expand the previous
analyses to predict driver error during a takeover process
using machine learning algorithms for a range of window
sizes using a set of data generated from a driving simula-
tor experiment during automated vehicle driving. In par-
ticular, this study aims to understand the importance of
including granular driving performance data in combina-
tion with physiological and glance data for predicting
takeover errors.

Methods

The driving simulation experiment data were collected in
a Realtime Technologies driving simulator lab at the
Texas A&M Transportation Institute. The lab consists of
a quarter-cab driving simulator with three screens that
provide 165� horizontal and 35� vertical fields of view, a
speaker system to provide ambient roadway noise, and a
physiological and eye-tracking data collection suite. The
driving simulator setup is illustrated in Figure 1. The
original goal of the study was to analyze driver behavior
after silent automation failures and develop models of
driver behavior. The driving environment and automated
driving system were simulated using SimCreator soft-
ware, and were in line with level 2 automation according
to the Society of Automotive Engineers (SAE);

specifically, the software was configured with adaptive
cruise control and lane-keeping ability. The simulator’s
automated driving system was activated with a button on
a touch screen display located to the right of the steering
wheel. When the system encountered a failure or an
operational limit, the vehicle’s automated system was dis-
abled (see Alambeigi and McDonald (11) for a detailed
description).

Dataset

The study involved 64 participants (32 males, 32 females)
aged 19 to 65 with a mean age of 41.44 (SD=15.14)
years from the surrounding community. All participants
were English speakers, reported normal or corrected-to-
normal visual acuity and normal color vision, held a
valid driver’s license, reported driving experience of at
least 1.5 years, were not on any medication that may
have affected their ability to operate a moving vehicle,
had not previously participated in an experiment involv-
ing automated vehicles, and had no previous experience
of driving an automated vehicle (SAE level 2 or higher).
All procedures were approved by the Texas A&M
Institutional Review Board (IRB2018-1362D) and were
conducted in accordance with the principles expressed in
the American Psychological Association Code of Ethics.
Informed consent was obtained from each participant
and they received $50 for taking part.

Throughout the experiment, driving performance
data, including continuous steering wheel position, accel-
erator and brake pedal positions, velocity, time to lane
crossing, time headway to an upstream object, and lane
position were collected at a 60Hz sampling rate.
Physiological indicators, including heart rate, breathing

Figure 1. The driving simulation lab setup. The left figure shows the driver’s seat and forward view screens, and the right shows the
dashboard and the automated system console (the tablet screen to the right of the steering wheel). Note that the eye-tracking system is
positioned on top of the dashboard.
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rate, and electrodermal activity (EDA), were also col-
lected from each participant. Heart rate and breathing
rate were measured using a Zephyr BioHarness 3.0
(Zephyr Technology, Annapolis, MD), which is an
adjustable chest strap with an embedded ECG sensor, at
a 1Hz sampling rate. The EDA data were measured at
60Hz using a Shimmer3 wireless galvanic skin response
(GSR) sensor (Shimmer, Dublin, Ireland), which is an
elastic strap that was attached to subjects’ wrists on their
nondominant hand, and two electrodes attached to the
palm. Glance behavior data were collected using a
dashboard-mounted FOVIO eye-tracking system (Seeing
Machines, Canberra, Australia), which was interfaced
with EyeWorks data recordinges software (EyeTracking
LLC, Solana Beach, CA). Participants were calibrated to
the FOVIO system using a four-point calibration screen
and were instructed to look at the exterior edges of the
panoramic display while maintaining a directly forward
field of view. The driving performance dataset compiled
from the experiment has been published in the Virginia
Tech Transportation Institute data repository (12).

The study process consisted of a 10-min training ses-
sion on the system capability and operation, two practice
drives, and four counterbalanced experimental drives
separated by 2-min breaks. The experimental portion of
the study was designed as a 2 3 2 3 2 study with sce-
nario criticality (critical or noncritical) and failure type
(braking response or unexpected obstacle) as within-
subjects factors and alert type (silent, audiovisual) as a
between-subjects factor. For the purposes of the current
analysis, only the braking response failure is included,
because it has been found to be one of the most com-
monly experienced real-world scenarios (3). The experi-
mental drives took place on a 10-mile section of a 4-lane
straight highway on which the participants drove in a 3-
vehicle platoon with a 1 s time headway. The unexpected
braking scenario included two braking events after
approximately three and seven miles of driving. In the
first event, the automated system responded

appropriately when the lead vehicle braked and in the
second event the automated system failed to respond. In
the latter event, the vehicle’s lateral and longitudinal
control failed, necessitating a takeover. The criticality of
the scenario was manipulated using the deceleration rates
of the lead vehicle, for which the constant deceleration
rate of 2m/s2 represented the noncritical scenario and
5m/s2 represented the critical scenario. Figure 2 shows
the unexpected braking takeover scenario from the driv-
er’s view (left) and an overhead view (right). At the start
of the failure in each drive, participants in the audiovi-
sual alert type condition received an auditory alert (loud
beeping sound) and a visual alert (change of color on the
instrument cluster and a notification displayed on the
automated system activation screen), indicating the need
to take over. Participants in the silent failure condition
received no alert. Drivers were instructed to keep their
hands on the steering wheel throughout the experiment
and informed that it was their responsibility to monitor
the automated system and the driving environment.

Data Preprocessing and Ground Truth Definition

All 64 participants completed the entire experiment,
resulting in 128 completed driving performance, physio-
logical, and glance datasets; however, physiological data
from the BioHarness—including the heart rate
variability—for four drivers were missing and, thus,
excluded. Two additional participants were excluded
from the datasets because of technical and calibration
issues in relation to the eye tracking, resulting in 122
complete datasets. All the data preprocessing and analy-
sis steps were performed in R 4.0.3 (13) using the ‘‘tidy-
models’’ package (14). Figure 3 illustrates the entire
analysis schematic.

The driving and physiological datasets started from
the beginning of the drive and ended approximately 3
min after the event was completed. The driving perfor-
mance data and the physiological data from the GSR

Figure 2. Unexpected braking takeover scenario with the construction zone on the road shoulder. The left figure shows the simulator
scenario from the driver’s view and the right figure shows the scenario schematic from the top view.
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sensor were down-sampled to 10Hz from 60Hz using
the mean of every six samples. The BioHarness yielded
1Hz data from the entire experiment process and these
were assigned to each scenario based on the synchro-
nized time. The glance data were manually annotated by
two independent coders from 10 s before the event onset
until the end of the event. The event onset was defined as
the time when the lead vehicle started decelerating and
the automated system failed to respond, and the end of
the event was defined as the time at which either a crash
happened or the situation was resolved (i.e., the time at
which the driver released the brake then accelerated, or
completed the lane change maneuver by stabilizing the
vehicle in the new lane). The areas of interest in the cod-
ing process included glance at the lead vehicle, dash-
board, automated system console, construction site,
road, and off road (e.g., surrounding buildings). For the
purposes of the current analysis, the driving performance
data included only the time range during which the vehi-
cle was manually driven by the driver following the fail-
ure onset until the time of the takeover, the physiological
data included the entire drive up to the time of the take-
over, and the glance data included 10 s before the event
to the time of the takeover. The takeover time was con-
sidered as the time between the event onset and the start
of a braking maneuver, steering maneuver, or both,
greater than a certain threshold. The data from all these
sources were time synced to a 10th of a millisecond.

After the data were integrated, a data filtering and
baselining process was performed. First, a plausibility filter
was applied to the physiological data to remove invalid
data (e.g., heart rate values of 0) that were a result of the
posture adopted by the participants, which made the chest
strap sensor slide against the participant’s skin and lose
contact, a result of poor fitting. This step was guided by
the data recording limits in each device’s user manual.
Next, a low-pass Butterworth filter with a sampling fre-
quency of 1Hz and a cutoff frequency of 0.1Hz was
applied to reduce noise. The optimal cutoff frequency was
computed following the work by Yu et al. (15). Once the

noise removal process was completed, the physiological
data were scaled relative to a baseline, which was defined
as the mean of a 30-s time period of automated driving
from the beginning of the drive after enabling the auto-
mated driving system and before encountering the event
for each participant. The selection of this method for
defining the baseline was guided by previous driving simu-
lator studies (16, 17). An example of the processed physio-
logical and driving performance data is shown in Figure 4.

The data were labeled as either error or no error
based on driver performance during the takeover pro-
cess. Error was defined as a failure to complete a neces-
sary subtask during the takeover maneuver (e.g., failing
to check the side mirror before a lane change) or com-
pleting the necessary tasks but in the wrong order (e.g.,
checking the side mirror after a lane change). Eventually,
22 drives were labeled as error and 100 drives as no
error. Table 2 shows the order of subtasks associated
with a braking or a lane change maneuver, and the cate-
gories used to define an error.

Feature Extraction and Reduction

Following data preprocessing, a set of 73 features was
extracted for window sizes including 3 s, 5 s, 10 s, 15 s, 20 s,
30 s, 60 s, 120 s, and 300 s before the takeover time. The
driving features were limited to post-event and glance fea-
tures were limited to 10 s before the event. Thus, longer
window sizes (.10 s) mostly consisted of physiological fea-
tures. The takeover time was defined as the time between
the event onset and the start of the maneuver greater than
a threshold of 2� for steering wheel angle rotation and 10%
for brake pedal position (4). Features were generated from
the driving performance, physiological, and glance mea-
sures. Table 3 shows the features extracted along with their
corresponding measures and data sources. After the fea-
tures were generated, they were centered and scaled and
feature reduction was performed to remove features with
near-zero variance (cutoff value of 19) and highly corre-
lated data (features with an absolute Pearson correlation

Figure 3. Analysis schematic, including the datasets, preprocessing steps, and development of the algorithm
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greater than 0.85). Lastly, the data were up-sampled. These
steps were guided by the work in McDonald et al. (18).
The feature reduction resulted in a total of 42 features in
each window size. These features are highlighted in Table
3.

Algorithm Training and Evaluation

Three machine learning algorithms—decision tree, ran-
dom forest, and SVM with a radial basis kernel—were
trained for each of the window size datasets. Each dataset
contained one row for each drive and 42 features defined
for the given window size. These algorithms were selected
because they are the most commonly applied methods in
the field and they allowed a comparison between simple
and complex models. Although other approaches also
have several advantages, the study design limited the use
of these algorithms (e.g., insufficient data to use neural

network and deep neural network). In addition, previous
research suggests that logistic regression kNN was
unlikely to outperform SVM and tree-based models (5).
Down-selecting the algorithms also helps to maintain sta-
tistical power and avoid an excessive number of pairwise
comparisons in performing statistical analysis. The train-
ing process consisted of a five-fold grouped cross-
validation process. The data were partitioned at the
driver level (to avoid a driver’s dataset being included in
both training and testing). Following data partitioning,
the data were up-sampled to create a balanced training
set. The trained algorithms were assessed by their area
under the receiver operating characteristic (ROC) curve
(AUC) across the five groups (19), for which a higher
value of AUC indicates a better performance. The algo-
rithms’ AUC differences were statistically evaluated
using the DeLong test for ROC curves with a threshold
of p\ .05. The DeLong test is a nonparametric test that

Figure 4. An example of the preprocessed data. The top plot shows the GSR from the physiological dataset and the bottom plot shows
the speed of the vehicle from the driving simulator dataset.
Note: GSR = galvanic skin response

Table 2. Order of Subtasks Associated with a Braking or Lane-Changing Maneuver and the Categories Used to Define an Error

Maneuver Subtask Error

Braking Looking at the lead vehicle Not checking the rearview mirror
Braking before checking the rearview mirror
Crash

Moving hands/feet toward the wheel/pedal
Checking the rearview mirror
Applying the brake
Avoiding a crash

Lane changing Looking at the lead vehicle Not checking the sideview mirror
Lane changing before checking the sideview mirror
Driving off the road
Crash

Moving hands/feet toward the wheel/pedal
Checking the sideview mirror
Applying the brake
Avoiding a crash
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can be used to investigate whether the AUCs of two
models are statistically significantly different. The
DeLong test on the ROC curve has been shown to be
equal to the Mann–Whitney U-statistic for comparing
distributions of values from the two samples. In addition
to the analysis of algorithm performance, a feature
importance analysis using permutation-based importance
measure was performed for the algorithm with the best
predictive performance to provide additional insights
into the drivers’ behavioral patterns. The feature impor-
tance values indicate each feature’s predictive ability by
computing mean decrease in accuracy in predicting an
error. In this analysis, larger values of decrease in accu-
racy represent the most important features. Therefore,
removing a variable from the model lessens the accuracy
of that particular model.

Results

Figure 5 shows the algorithm AUC categorized by the win-
dow size and machine learning algorithm (decision tree, ran-
dom forest, SVM with a radial basis kernel). The black
error bars indicate the 95% confidence intervals based on

the standard errors. The dashed line in Figure 5 shows ran-
dom guessing performance. The statistical analysis of the
algorithms showed that the random forest algorithm out-
performed the other models across most of the window
sizes. Therefore, random forest was selected for further
analysis. This is in line with previous research that found
random forest generally outperforms simple decision tree
and boosted tree models. Figure 5 shows that the random
forest algorithm with a 3 s window size had the highest
AUC of 0.72 with the 95% confidence interval of (0.56,
0.87) followed by a 20 s window with an AUC of 0.67
(0.55, 0.78) and then a 15 s window with an AUC of 0.65
(0.55, 0.77) both from the random forest. A significant dif-
ference was found in the AUC between the random forest
with a 3 s time window and random guessing (p= .01). In
addition, pairwise comparison showed that random gues-
sing outperformed random forest for 5 s, 30 s, 60 s, 120 s,
and 300 s window sizes (p\ .05). However, no significant
differences were found between 3 s and 10 s (p= .40), 15 s
(p= .26), and 20 s (p= .50) windows for random forest.
Table 4 shows the results of the DeLong test for the pair-
wise comparisons between the random forest algorithm
with a 3 s window size and the other fitted algorithms.

Table 3. Categorization of the Datasets, Measures, and the Extracted Features

Data source Measure Unit Feature

Driving simulator Longitudinal and lateral
speed

Meters per second Max, min, mean, med, and SD of the speed

Longitudinal and lateral
acceleration

Meters per squared
second

Max, min, mean, med, and SD of the acceleration

Acceleration and brake
pedal position

na Max, min, mean, med, SD, and zero crossing rate
of the pedal position

Lane offset Inches Max, min, mean, med, SD, and lane center crossing
rate

Steering wheel angle Degrees Max, min, mean, med, SD, zero crossing rate,
maximum steering wheel angle rate, and sample
entropy of the steering wheel angle

Automation
disengagement

Count Rate of disengagement

Time to collision Seconds Min TTC after the event onset
BioHarness/GSR Heart rate Beats per min Max, min, mean, med, and SD of heart rate

Heart rate variability Standard deviation in
milliseconds

Max, min, mean, med, and SD of heart rate variability

Breathing rate Breaths per minute Max, min, mean, med, and SD of breathing rate
Galvanic skin response Kilo ohms Max, min, mean, med, and SD of electrodermal

activity
FOVIO First fixation location na Location of the first observed area of interest

after the event onset
First fixation duration Seconds Duration of the first observed area of interest

after the event onset
Fixation rate Count Number of fixations on areas of interests
Fixation change rate Count Number of changes in fixation location
Eyes off road Seconds Duration of off-road glances
Eyes on road Seconds Duration of on-road glances

Note: max = maximum; min = minimum; med = median; SD = standard deviation; TTC = time to collision; GSR = galvanic skin response; na = not

applicable. The features included in the algorithms are highlighted in bold.

Alambeigi et al 7



In addition to the algorithm analysis, feature impor-
tance values were computed to provide additional insight
into each feature’s relative importance in the takeover

error prediction. The importance values indicate each
feature’s mean decrease in accuracy in predicting the
error. Thus, larger values of decrease in accuracy

Table 4. DeLong Test Results for Pairwise Comparisons between the Random Forest Algorithm with a 3 s Window Size and the Other
Fitted Algorithms.

Classification algorithm Window size AUC (bootstrapped confidence interval) DeLong test (random forest 3 s)

Random forest 3 0.72 (0.56, 0.87) na
5 0.62 (0.42, 0.82) D(225.50)=3.30; p\0.05
10 0.65 (0.46, 0.83) D(225.90)=0.67; p=0.40
15 0.65 (0.55, 0.77) D(226.22)=0.68; p=0.26
20 0.67 (0.55, 0.78) D(218.60)=0.49; p=0.50
30 0.61 (0.45, 0.77) D(221.10)=3.08; p\0.05
60 0.59 (0.44, 0.74) D(226.49)=3.04; p\0.05
120 0.59 (0.47, 0.71) D(225.91)=3.06; p\0.05
300 0.58 (0.49, 0.67) D(224.29)=2.51; p\0.05

Decision tree 3 0.59 (0.48, 0.72) D(225.59)=2.66; p\0.05
5 0.51 (0.36, 0.67) D(223.23)=2.76; p\0.05
10 0.55 (0.46, 0.64) D(223.50)=2.87; p\0.05
15 0.57 (0.47, 0.67) D(219.37)=3.00; p\0.05
20 0.58 (0.46, 0.71) D(219.00)=3.01; p\0.05
30 0.62 (0.53, 0.71) D(221.11)=2.14; p\0.05
60 0.54 (0.46, 0.62) D(224.41)=2.58; p\0.05
120 0.50 (0.42, 0.58) D(222.84)=2.54; p\0.05
300 0.54 (0.47, 0.61) D(225.59)=2.66; p\0.05

SVM 3 0.62 (0.53, 0.70) D(225.15)=2.60; p\0.05
5 0.53 (0.33, 0.72) D(218.35)=2.64; p\0.05
10 0.52 (0.35, 0.70) D(210.48)=2.85; p\0.05
15 0.58 (0.48, 0.69) D(211.77)=3.00; p\0.05
20 0.55 (0.42, 0.68) D(221.89)=2.60; p\0.05
30 0.50 (0.35, 0.64) D(221.86)=2.99; p\0.05
60 0.60 (0.52, 0.68) D(206.46)=3.54; p\0.05
120 0.56 (0.45, 0.67) D(226.00)=2.14; p\0.05
300 0.60 (0.49, 0.70) D(217.67)=3.39; p\0.05

Note: AUC = area under the curve; SVM = support vector machine; na = not applicable

Figure 5. Algorithm AUC categorized by machine learning approach and window size. The horizontal dashed line indicates random
guessing performance. The error bars indicate the 95% confidence intervals based on the standard errors.
Note: AUC = area under the curve; SVM = support vector machine
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represent the most important features. Figure 6 shows
the 10 most important features for the random forest
model with a 3 s time window. The results show the
importance of all three measures used: granular driving
performance, physiological, and glance data. The figure
indicates that median speed is the most important fea-
ture, although features derived from heart rate, glance
duration, braking, and steering behavior are also impor-
tant. This is worthy of note because of the potential
implications for data collection requirements in relation
to future error prediction technology.

Discussion

In this study, we developed 27 machine learning algo-
rithms to predict takeover errors using a set of granular
driving performance, physiological, and glance data that
were gathered during partially automated vehicle driv-
ing. The 27 algorithms differed according to the machine
learning approach (random forest, decision tree, SVM
with a radial basis kernel) and the window size of data
before takeover (3 s, 5 s, 10 s, 15 s, 20 s, 30 s, 60 s, 120 s,
300 s). The results suggest that these algorithms can pre-
dict takeover errors significantly better than random gues-
sing, although the findings are inconsistent. There is some
indication that a window size of 3 s leads to a higher AUC
for the random forest algorithm; however, the difference
was not significant across some other window sizes (i.e.,
10 s, 15 s, and 20 s).

The results showed that the random forest classifier
outperformed the remaining algorithms as indicated by
the AUC values. This finding is consistent with previous
studies in the automated vehicle driving domain. Du

et al. (5) found random forest as a classifier to have the
highest mean prediction accuracy (83%) compared with
other approaches, including decision tree and SVM. The
results of the AUC show a high value for the random
forest model with a 3 s time window (0.72), followed by
the 20 s (0.67) and 15 s (0.65) windows. A significant dif-
ference was shown for the 3 s window and random gues-
sing (p= 0.01). In addition, with regard to the random
forest model, the size of the window significantly influ-
enced the prediction performance. Pairwise comparisons
between 3 s and other window sizes showed significant
differences between the 3 s window and 5 s, 30 s, 60 s,
120 s, and 300 s window sizes, whereas no significant dif-
ferences were found for the 10 s, 15 s, and 20 s sizes.
Despite the fact there were no significant differences
between the random forest with 3 s and the random for-
est with 10 s, 15 s, and 20 s window sizes, we focused the
remainder of the analysis on the random forest with 3 s
for brevity. Notably, there were no differences in the
important features across these window sizes. In addi-
tion, a 3 s random forest may be preferable in an applied
setting because of the reduction in data retention needed
for a 3 s feature window compared with 10–20 s win-
dows. This finding aligns with that of Du et al. (5), who
recommended 3 s as the optimal timeframe for predicting
driver takeover performance. Although a broader range
of (physiological) measures—up to 300 s before the
takeover—were included in this study, no significant
improvement was found. Collectively, these findings
might suggest that as we go further from the takeover
event (i.e., more than 20 s), the correlations between the
takeover error and other influential factors—in particu-
lar physiological—fade. Further investigation is needed
to explore this speculation.

The analysis of feature importance highlights the
necessity of including a combination of driving perfor-
mance, physiological, and glance measures in takeover
error prediction. The findings in relation to the 10 most
important features show that driving variables, including
median lateral and longitudinal speed, median steering
wheel angle, minimum TTC, maximum and median
brake pedal position, and maximum lateral acceleration
play an important role in error detection. Finding mini-
mum TTC to be one of the most important features is
worthy of note. Minimum TTC, which has been used in
several studies, is an established surrogate safety metric
for longitudinal vehicle control (4). Inverse TTC is asso-
ciated with the perceived criticality of the situation and
has been shown to have a strong link with driver beha-
vior because it may trigger emergency avoidance reac-
tions (20, 21). Thus, a lower minimum TTC might lead
to a more abrupt maneuver and, thus, more errors. It is
important to note that these measures are more granular
than the environmental parameters (e.g., traffic density)

Figure 6. Mean decrease in algorithm accuracy of the 3 s
window random forest algorithm associated with the top 10
features
Note: med = median; max = maximum; min = minimum; Pos = position;

HR = heart rate; Lat = lateral; SWA = steering wheel angle; TTC = time to

collision; Acc = acceleration
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included in previous work (5, 7, 8). Perhaps the most rel-
evant feature in relation to the findings of this study—in
particular with regard to the minimum TTC—is the
takeover time budget found in Du et al. (5), which was
identified as one of the important features in takeover
performance prediction. Previous studies have shown
that a shorter takeover time budget is associated with a
shorter minimum TTC (11). Thus, our finding is aligned
with the takeover time budget found in Du et al. (5).

With regard to physiological indices, heart rate was
found to be the most important feature. This result
aligns with Du et al. (5), who also identified heart rate-
based measures as being important. The duration of on-
road glances and the duration of first fixation 3 s before
the takeover were the most important glance features.
This finding might be associated with the visual readiness
component of a takeover process in which the driver has
to redirect his/her gaze to the forward roadway. Thus, it
is reasonable to say that as the duration of on-road
glances decreases, the probability of making an error
increases. This finding is consistent with Tivesten et al.
(8), who found that low visual attention to the forward
roadway was associated with an increased risk of being
involved in a crash.

The results of this study have implications for devel-
oping algorithms for driver error detection and mitiga-
tion. The findings suggest that 3 s before the takeover is
required to predict driver takeover error, and the driving
performance, physiological, and glance measures need to
be collected within this range. Given these findings, con-
sideration should be given to designing advanced in-
vehicle monitoring systems to monitor the driver’s state
proactively, and issue a warning if an abnormality is
detected. Providing dynamic feedback to the driver can
mitigate driver takeover errors.

Limitations and Future Work

Although the analysis provides useful insights into data
implementation and driver error prediction, it is limited
in some respects. First, the number of observations in
this study was relatively small, which limits the use of
more complicated algorithms. In addition, given the
nature of the simulator scenario, the driving performance
data are only available after the onset of the event to the
takeover time, which might lead to inconsistencies
between the physiological and glance data, and the
length of the window sizes. Moreover, the collected data
were from a driving simulator, which provides relative
validity and might not reflect real-world situations.
Another limitation is that the feature importance analy-
sis only highlighted the most important features and
their relative importance for accurate classification; to
obtain information with regard to the magnitude of
changes in a variable and its impact on prediction,

further analysis such as partial dependence or Shapley
values is needed. Future work should focus on analysis
of driver error using a larger and more diverse dataset,
including varied levels of pre-takeover stress and differ-
ent driver characteristics, and validate the findings in on-
road real-world automated driving settings.

Conclusions

The goal of the current study was to investigate which
driving performance, physiological, and glance measures
before a takeover can capture driver error during a take-
over process. In addition, the study focused on detecting
an effective range of data for implementing the model
predictions. We analyzed a combination of physiological,
driving performance, and glance data from a driving
simulator experiment during a partially automated
experimental drive in which the takeover scenario con-
sisted of a lead vehicle unexpectedly braking because it
was approaching a construction site. A set of features
has been generated, and three machine learning algo-
rithms (SVM with a radial basis kernel, decision tree,
and random forest) were applied to these features. We
found the random forest with an AUC of 0.72 to be the
best classifier for predicting driver error based on a 3 s
time window before the takeover time. In addition, the
results highlighted the importance of driving perfor-
mance measures including speed, brake pedal position,
TTC, acceleration and steering wheel angle, physiologi-
cal measures including heart rate, and glance measures
including the duration of on-road glances and duration
of first fixation. The findings provide useful insights into
data collection requirements for designing driver error
prediction technologies.
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